UNIVERSITÀ DEGLI STUDI DI PADOVA

Facoltà di Ingegneria - sede di Vicenza A.A. 2007/08

Corso di Disegno Tecnico Industriale

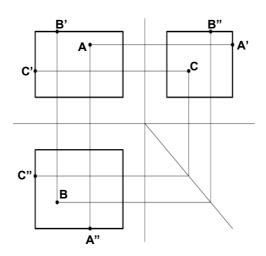
per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica

Proiezioni ortogonali:

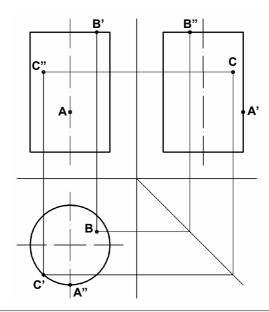
- · Corrispondenze tra viste
- Intersezioni
- Sviluppi

Docente: Gianmaria Concheri E-mail:gianmaria.concheri@unipd.it

Tel. 049 8276739



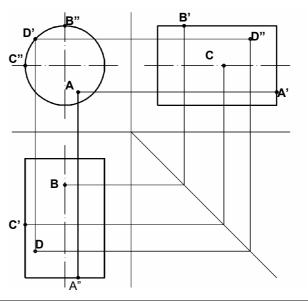
CORSO DI DISEGNO TECNICO INDUSTRIALE A.A. 2007/08


Proiezioni ortogonali: corrispondenze tra viste

Parallelepipedo

Cilindro: disposizione 1

A.A. 2007/08



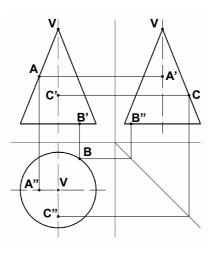
CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri



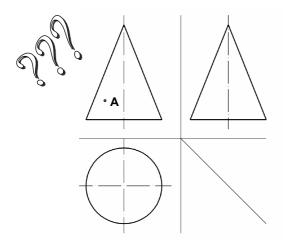
Proiezioni ortogonali: corrispondenze tra viste

Cilindro: disposizione 2

Cilindro: disposizione 3


LABORATORIO DI DISEGNO E METODI DELL'INGEGNERIA INDUSTRIALE

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri A.A. 2007/08



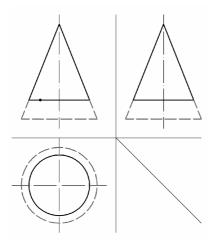
Proiezioni ortogonali: corrispondenze tra viste

Cono: proiezione dei punti "principali"

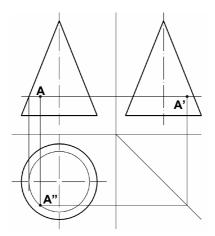
Cono: proiezione di altri punti

Esistono 2 metodi per proiettare i punti sulle altre viste:

- 1. Sezionare il cono con "piani ausiliari"
- 2. Utilizzare le generatrici del cono



CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri A.A. 2007/08


Proiezioni ortogonali: corrispondenze tra viste

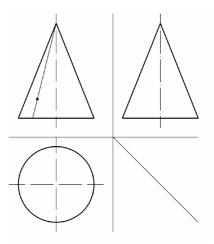
Cono: 1° metodo di proiezione (metodo dei piani ausiliari)

Si pensa che il punto da proiettare sia contenuto nella base del cono; per far questo si individua un cono più piccolo sulla figura

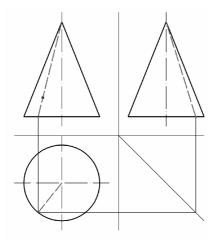
Cono: 1° metodo di proiezione (metodo dei piani ausiliari)

...la proiezione si riconduce dunque al caso visto precedentemente (proiezione dei punti "principali")

LABORATORIO DI DISEGNO E METODI DELL'INGEGNERIA INDUSTRIALE


A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri


Proiezioni ortogonali: corrispondenze tra viste

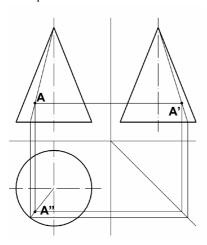
Cono: 2° metodo di proiezione

Il punto da proiettare in questo caso appartiene ad una generatrice del cono.

Cono: 2° metodo di proiezione

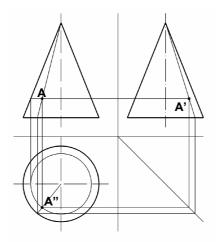
Bisogna dunque individuare la stessa generatrice sulle altre viste.

LABORATORIO DI DISEGNO E METODI DELL'INGEGNERIA INDUSTRIALE


A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri

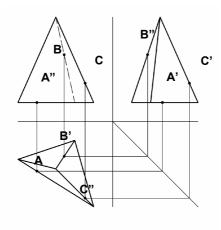
Proiezioni ortogonali: corrispondenze tra viste


Cono: 2° metodo di proiezione

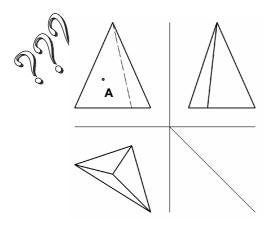
...e individuare il punto da proiettare sulle generatrici individuate.

Cono

Le due costruzioni risultano chiaramente identiche


A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri



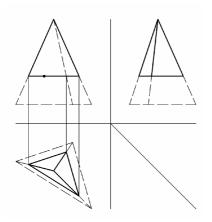
Proiezioni ortogonali: corrispondenze tra viste

Piramide: proiezione dei punti "principali"

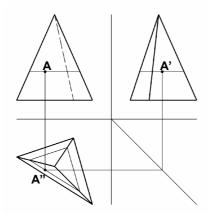
Piramide: proiezione di altri punti

Esistono 2 metodi per proiettare i punti sulle altre viste (come per il cono):

- 1. Sezionare la piramide con un piano orizzontale
- 2. Utilizzare le generatrici della piramide



CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri A.A. 2007/08


Proiezioni ortogonali: corrispondenze tra viste

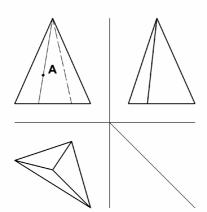
Piramide: 1° metodo di proiezione (metodo dei piani ausiliari)

Si pensa che il punto da proiettare sia contenuto nella base della piramide; per far questo si individua una piramide più piccola sulla figura

Piramide: 1° metodo di proiezione (metodo dei piani ausiliari)

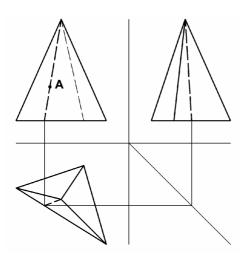
...la proiezione si riconduce dunque al caso visto precedentemente (proiezione dei punti "principali")

LABORATORIO DI DISEGNO E METODI DELL'INGEGNERIA INDUSTRIALE


A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri

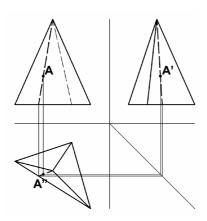
Proiezioni ortogonali: corrispondenze tra viste


Piramide: 2° metodo di proiezione

Il punto da proiettare in questo caso appartiene ad una generatrice della piramide.

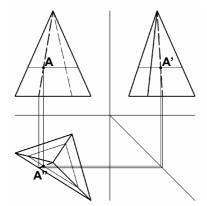
Piramide: 2° metodo di proiezione

Bisogna dunque individuare la stessa generatrice sulle altre viste.


A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri

Proiezioni ortogonali: corrispondenze tra viste

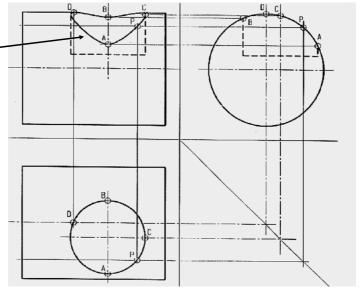

Piramide: 2° metodo di proiezione

...e individuare il punto da proiettare sulle generatrici individuate.

Piramide

Le due costruzioni risultano chiaramente identiche

LABORATORIO DI DISEGNO E METODI DELL'INGEGNERIA INDUSTRIALE


A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri

Intersezioni

Determinazione della curva che nasce dall'intersezione di un cilindro con un foro cilindrico

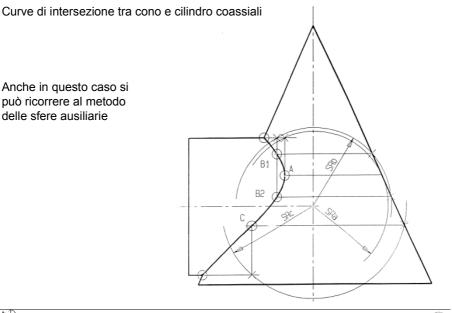
Intersezioni

Determinazione della curva che nasce dall'intersezione tra due cilindri

Metodo delle sfere ausiliarie: si può usare solo se gli elementi che si intersecano hanno gli assi concorrenti in un medesimo punto e sono elementi di rivoluzione

(cilindri e coni); permette di determinare l'intersezione con un'unica vista L'intersezione tra un elemento di rivoluzione e una sfera è una retta Consideriamo la sfera di raggio R1: la sua intersezione con il cilindro c1 è r3 costituita da due circonferenze le cui tracce sul piano di disegno sono le rette r1 ed r2; analogamente, l'intersezione della medesima sfera di raggio R1 con il cilindro r2 c2 è rappresentata dalla retta r3. L'intersezione delle rette determina i punti comuni a cilindri e sfera e quindi i punti di intersezione Se i due cilindri hanno lo stessodiametro nascono delle rette

LABORATORIO DI DISEGNO E METODI DELL'INGEGNERIA INDUSTRIALE

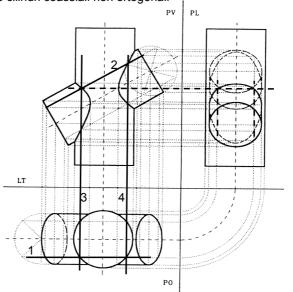

A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE

Intersezioni

Anche in questo caso si può ricorrere al metodo

delle sfere ausiliarie

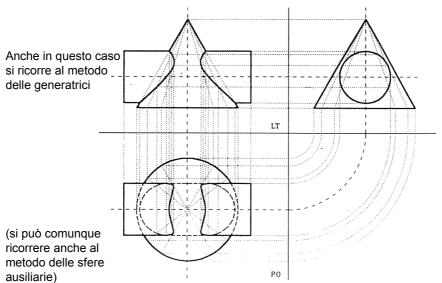


Intersezioni

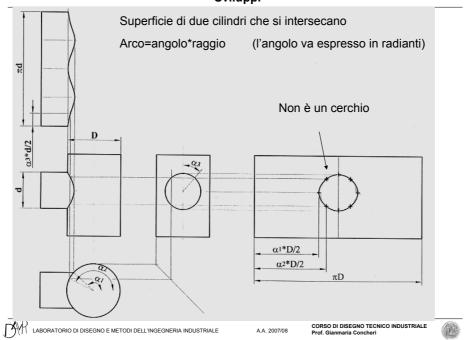
Si può ricorrere alla valutazione dell'intersezione le primitive (1,2) e le relative proiezioni (3,4) nei punti di intersezione noti

Anche in questo caso si può ricorrere al metodo delle sfere ausiliarie

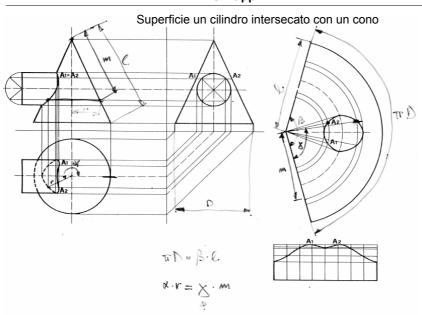
LABORATORIO DI DISEGNO E METODI DELL'INGEGNERIA INDUSTRIALE


A.A. 2007/08

CORSO DI DISEGNO TECNICO INDUSTRIALE Prof. Gianmaria Concheri



Intersezioni


Curve di intersezione tra cono e cilindro coassiali

Sviluppi

Sviluppi

