
Visualizing Brand Associations
from Web Community Photos

Gunhee Kim
∗

Carnegie Mellon University
Pittsburgh, 15213 PA

gunhee@cs.cmu.edu

Eric P. Xing
Carnegie Mellon University

Pittsburgh, 15213 PA
epxing@cs.cmu.edu

ABSTRACT
Brand Associations, one of central concepts in marketing,
describe customers’ top-of-mind attitudes or feelings toward
a brand. Thus, this consumer-driven brand equity often
attains the grounds for purchasing products or services of
the brand. Traditionally, brand associations are measured
by analyzing the text data from consumers’ responses to
the survey or their online conversation logs. In this paper,
we propose to go beyond text data and leverage large-scale
online photo collections contributed by the general public,
which have not been explored so far. As a first technical
step toward the study of photo-based brand associations,
we aim to jointly achieve the following two visualization
tasks in a mutually-rewarding way: (i) detecting and visu-
alizing core visual concepts associated with brands, and (ii)
localizing the regions of brand in the images. With experi-
ments on about five millions of images of 48 brands crawled
from five popular online photo sharing sites, we demonstrate
that our approach can discover complementary views on the
brand associations that are hardly mined from the text data.
We also quantitatively show that our approach outperforms
other candidate methods on the both visualization tasks.

Categories and Subject Descriptors
I.4.9 [Image processing and computer vision]: Appli-
cations; J.4 [Computer Applications]: Social and behav-
ioral sciences—Economics

Keywords
Brand associations; summarization and visualization of mul-
timedia data; image segmentation

1. INTRODUCTION
Brand equity describes a set of values or assets linked to

a brand [1, 12]. It is one of core concepts in marketing
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since it is a key source of bearing the competitive advan-
tage of a company over its competitors, boosting efficiency
and effectiveness of marketing programs, and attaining the
price premium due to increased customer satisfaction and
loyalty, to name a few. A central component of brand eq-
uity is brand associations, which are the set of associations
that consumers perceive with the brand [12]. For example,
the brand associations of Nike may include Tiger Woods,
shoes, basketball, and so on. Its significance lies in that it
is a customer-driven brand equity; that is, the brand as-
sociations are directly connected to customers’ top-of-mind
attitudes or feelings toward the brand, which provoke the
reasons to preferentially purchase the products or services
of the brand. For instance, if a customer strongly associates
Nike with golf shirts, he may tend to first consider Nike
products over other competitors’ ones when he needs one.

Traditionally, measuring brand associations is a challeng-
ing task because it should be built from direct consumer
responses to carefully designed questionnaires [2, 5, 23, 25].
With the recent emergence of online social media, it has
been developed to indirectly leverage consumer-generated
data on online communities such as Weblogs, boards, and
Wiki. Beneficially, resources on such social media are ob-
tainable inexpensively and almost instantaneously from a
large crowd of potential customers. One typical example
of such practice is the Brand Association Map developed
by Nielsen Online [2, 19], in which important concepts and
themes correlated with a given brand name are automati-
cally extracted from the data of online conversations.

In this paper, in order to elicit the brand associations, we
propose to go beyond textual media, and take advantage of
large-scale online photo collections, which have not been ex-
plored so far. Admittedly, pictures can be inferior to mine
users’ subjective sentiments than texts (e.g . Nike is too ex-
pensive). However, pictures can be a complementary infor-
mation modality to show customers’ experiences regarding
brands within a natural context. With widespread availabil-
ity of digital cameras and smartphones, people can freely
take pictures on any memorable moments, which include
experiencing or purchasing products they like. In addition,
many online tools enable people to easily share, comment,
or bookmark the images of products that they wish to buy.

More specifically, as a first technical step to the study of
the photo-based brand associations, we address the problem
of jointly achieving the following two levels of visualization
tasks for brand associations. (See Fig.1).

(1) Detecting key pictorial concepts associated with brands:
It has been a central problem in brand association research



Figure 1: Examples of two visualization tasks for the brand association study leveraging Web community photos.

We show two competing sports brands: Nike and Adidas side by side. (a) Task1: we perform exemplar detection and

clustering to reconstruct brand association maps. More strongly associated clusters with the brand appear closer to

the center of the map, and more similar pairs of clusters have smaller angular distances. We illustrate top 20 exemplars

(i.e. cluster centers) in the map. On the right, we show the average images of six selected exemplars. (b) Task2: we

segment the most associated regions of brand in the images.

to identify and visualize important concepts associated with
brands in the form of a network or a map [2, 6, 23, 25].
Therefore, our first task is, as shown in Fig.1.(a), to visualize
core visual concepts of brands by summarizing online photos
that are tagged and organized by general users. This goal
involves three sub-problems: identifying a small number of
image clusters and exemplars (i.e. cluster centers), discover-
ing the similarity relations between clusters, and projecting
them into a low-dimensional space.

(2) Localizing the regions of brand in images: Our second
task is the sub-image level visualization of brand associa-
tions, while the first task addresses the image-level one. We
aim to localize the regions that are most associated with
the brand in the images in an unsupervised way (i.e. with-
out any pre-defined models or human labeling), as shown
in Fig.1.(b). We perform pixel-level image segmentation to
delineate the regions of brand. Even though bounding boxes
may be better as the final output to the general users, they
can be trivially derived from segmentation results, by defin-
ing the minimum rectangle that encloses the segment while
ignoring tiny unconnected dots.

We choose the above two tasks as the most fundamental
building blocks for the photo-based brand associations for
following reasons. The first task can provide a structural
summary of large-scale and ever-growing online image data
of brands, which otherwise are too overwhelming for human
to grasp any underlying big picture. The second task helps
reveal typical interactions between users and products in
natural social scenes, which can lead a wide variety of po-
tential benefits, ranging from content-based image retrieval
to online multimedia advertisement.

Importantly, jointly solving these two tasks is mutually
rewarding, as we will show in our experiments. The exem-
plar detection/clustering can generate the coherent groups
of images from extremely diverse Web image set. Thus, it
can promote the brand localization because we can lever-
age the recurring foreground signals across the images of
the same group. In the reverse direction, localizing brand
regions can enhance the similarity measurement between im-
ages, which subsequently contributes to better exemplar de-
tection/clustering.

For evaluation, we collect about five millions of images for
48 brands of four categories (i.e. sports, luxury, beer, and
fastfood) from five popular photo sharing sites, including
Flickr, Photobucket, deviantART, Twitpic, and Pin-
terest. In our experiments, we first show several examples
of picture-driven brand association maps. We then demon-
strate that our approach outperforms other candidate meth-
ods on the both exemplar detection/clustering and brand
localization. Finally, we examine the correlations between
community photos and actual sales data of the brands.

1.1 Relations to Previous work
We introduce two lines of research related to our work.
Measuring brand associations: In almost all previ-

ous research for brand associations, consumer surveys are
the most popular way to collect source data. Among many
methods for conducting the surveys, the free association pro-
cedure has been one of the simplest but often most powerful
ways to profile brand associations [5, 6, 25]. In this tech-
nique, subjects are asked to freely answer their feelings and
thoughts about a given brand name without any editing or
censoring [18]. (e.g . What comes to mind when you think
of Nike?) Our research is also based on this free association
idea, since we view the Web photos tagged with a brand
name by anonymous users as their candid pictorial impres-
sions to the brand. Therefore, from a viewpoint of brand
association research, the contribution of our work is to in-
troduce a novel source of data for the analysis.

In this line of research, the brand association map of
Nielsen Online [2, 19] is closely related to our work because
both approaches explore the online data. However, our work
is unique in that we explore the images, which convey com-
plementary views on the brand associations over the texts.
Furthermore, we localize the regions of brand in the images,
which is another novel feature of our work.

Analysis of product images: Recently, with the ex-
ploding interests in electronic commerce, computer vision
techniques have widely applied to analyze product images
for commercial applications. Some notable examples in-
clude the product image search and ranking [10], the logo
and product detection in natural images [8, 11, 16, 22], and



Figure 2: The dataset of 48 brands crawled from five photo sharing sites of Table 1. The brands are classified into

four categories: (a) luxury, (b) sports, (c) beer, and (d) fastfood. The total number of images is 4,720,724.

Web sites Characteristics

Flickr/ Two largest and most popular photo sharing
Photobucket sites in terms of volumes of photos.
Pinterest Image collections bookmarked by users

deviantART Various forms of artwork created by users.
Twitpic Photos shared via Twitter.

Table 1: Five Web sites for crawling photos.

clothing parsing in fashion photos [27]. However, the ob-
jective of our work differs in that we aim to discover and
visualize the core concepts of brands from natural online
images, whereas most of past work has focused on detecting
a fixed number of specified product models or logos in the
images. Therefore, in our work, it is important to mine the
visual topics that do not explicitly contain the products but
reflect the general public’s experiences on the brands (e.g .
sponsored yacht competition scenes in the Rolex image set).

1.2 Summary of Contributions
The contributions of our work are summarized as follows:
(1) We study the problem of visualizing brand associations

in both image and sub-image levels by leveraging large-scale
online image collections. To the best of our knowledge, our
work is the first attempt so far on such photo-based brand
association analysis. Consequently, our work can provide
another novel and complementary way to visualize general
public’s opinions or experiences on the brands.

(2) We develop an algorithm to jointly achieve exemplar
detection/clustering and brand localization in a mutually-
rewarding way. In addition, we design an embedding algo-
rithm to visualize the top exemplars in a circular layout.

(3) With experiments on about five million images of 48
brands, we quantitatively demonstrate that our approach
outperforms other candidate methods on the both visual-
ization tasks.

2. PROBLEM FORMULATION

2.1 Image Data Crawling
As source data, we crawl images from the five popular

photo sharing sites in Table 1. The characteristics of the pic-
tures on the five sites are different from one another as shown
in Table 1. We exclude the Google image search because
much of the pictures are originated from online shopping
malls or news agencies. We prefer the photos that are con-
tributed by general Web users, because we are interested in
their candid views on the brands.

We query the brand names via the built-in search en-
gines of the sites, and download all retrieved images without
any filtering. We also crawl meta-data of the pictures (e.g .
timestamps, titles, user names, texts), if available.

Fig.2 summarizes our dataset of 4,783,345 images for 48
brands, which can be classified into four categories: luxury,
sports, beer, and fastfood. The number of images per brand
varies much according to the popularity of the brand.

2.2 Overview of Our Approach
Fig.3 presents the overview of our approach. The input

of our algorithm is a set of photos for a brand of interest.
Let I = {I1, · · · , IN} be the set of input images, where N
is the number of images. As shown in Fig.3.(b), our first
step is to build a K-nearest neighbor (KNN) graph G =
(I, E) in which each image is connected with its K most
similar images in I. We will present our image descriptors
in section 3.1, similarity measures in section 3.2, and KNN
graph construction in section 3.3.

The next step is to perform exemplar detection and clus-
tering on the graph G, which will be discussed in section 3.4.
Its goal is to discover a small set of representative images
called exemplars A(⊂ I), and to partition I so that each
image is associated with its closest exemplar, as shown in
Fig.3.(c). Therefore, the clusters are the groups of contex-
tually and visually similar images, and the exemplars are
the most prototypical images of the clusters.

The clustering step is beneficial to detect brand regions
in the images, because it can discover the coherent groups
of images from extremely diverse Web image set. (See ex-
amples in Fig.3.(d)). In our setting, the brand localization
is formulated as the problem of cosegmentation [13, 15],
which has been actively studied in the image segmentation
research. Its goal is to jointly segment out recurring objects
or foregrounds across the multiple images. Obviously, the
images in the same cluster are likely to share the similar
themes of the brand (e.g . bags in Fig.3.(d)), which can be
discovered by the cosegmentation approach. We summarize
the procedure of cosegmentation in section 3.5.

In our closed-loop approach, the segmentation can en-
hance the exemplar detection/clustering by promoting a more
accurate image similarity measure, which will be justified in
section 3.2 with an intuitive example. Hence, after finishing
the cosegmentation step, we can return to the KNN graph
construction and repeat the whole algorithm again with the
new segmentation-based image similarity metric.

The algorithm for the construction of brand association
maps (e.g . Fig.1) will be presented in section 4.

3. APPROACH

3.1 Feature Extraction
For image description, we use one of standard methods

in recent computer vision research: the dense feature ex-
traction with vector quantization. We densely extract two
most types of features from each image: HSV color SIFT



Figure 3: The overview of the proposed approach with an example of the Louis+Vuitton. (a) As an input, we crawl

the photos of the brand from the five photo sharing sites. (b) We build a K-nearest neighbor (KNN) similarity graph

between images. (c) We perform the graph-based exemplar detection/clustering. (d) Finally, we cosegment the images

in the same cluster in order to discover the most associated regions with the brand. As a closed-loop solution, we can

return to the KNN graph construction with the new segmentation-based image similarity metric.

Figure 4: The benefit of segmentation for image simi-

larity measurement. (a) For an unsegmented image pair,

the spatial pyramid histograms are constructed on the

whole images, which may not be robust against the lo-

cation and scale variations. (b) After segmentation, the

image similarity is computed as the mean of the best

assigned segment similarities.

and histogram of oriented edge (HOG) feature on a regular
grid at steps of 4 and 8 pixels, respectively. Then, we form
300 visual words for each feature type by applying K-means
to randomly selected features. Finally, the nearest word is
assigned to every node of the grid. We use publicly available
codes1 for the whole process of feature extraction.

3.2 Image Similarity Measure
One prerequisite to accurate clustering is an appropriate

similarity measure between images, denoted by σ : I × I →
R. We assert that even imperfect segmentation helps en-
hance the measurement of image similarity, which can justify
our closed-loop approach. Fig.4 shows a typical example, in
which the two images are similar in that both include per-
sons with glasses of Guinness beer. For an unsegmented
image pair, the image similarity is calculated from two-level
spatial pyramid histograms on the whole images [17], which
are not robust against location, scale, and pose variation as
shown in Fig.4.(a). On the other hand, as shown in Fig.4.(b),
this issue can be largely alleviated even with an imperfect
segmentation. Given the two segment sets of the images, we
find the best matches between them by solving the linear
assignment problem. Then, we compute the image similar-
ity by the mean of similarities between matched segments.

1The SIFT and HOG feature extraction codes are avail-
able at http://www.vlfeat.org, and at http://www.cs.brown.
edu/∼pff/latent, respectively.

For the segment similarity, we use the histogram intersection
kernel on the spatial pyramids of the segments.

3.3 Constructing K-Nearest Neighbor Graph
Given the image descriptors and similarity measures, the

construction of KNN graphs is straightforward. However, if
we naively compare all pairwise similarity, it takes O(N2),
which can be prohibitively slow for a large I. Fortunately, a
large number of algorithms have been proposed to construct
approximate KNN graphs with avoiding the quadratic com-
plexity. We use the idea of multiple random divide-and-
conquer [26], which allows to create an approximate KNN
graph of high accuracy in O(N logN) time. The method is
simple; we randomly and recursively partition the dataset
into subsets, and build an exact neighborhood graph over
each subset. This random divide-and-conquer process re-
peats for several times, and then the aggregation of all neigh-
borhood graphs of subsets can create an accurate approxi-
mate KNN graph with a high probability. The details of
theoretic analyses can be found in [26]. In our method, meta-
data of images are also exploited for the recursive random
division. We repeat partitioning the image set into subsets
according to each type of meta-data (e.g . image sources,
owners, titles, or timestamps, if available). For example, in
one partition, each subset includes the images taken at sim-
ilar time; in another partition, each subset comprises the
images owned by the same user. The basic assumption is
that if images are taken at similar time or by the same user,
they are likely to share similar contents. In our experiments,
this heuristics is reliable to build accurate KNN graphs.

3.4 Exemplar detection and clustering
Given a KNN graph G, our next step is to perform ex-

emplar detection. As a base algorithm, we use the diver-
sity ranking algorithm of [15], which can choose L number
of exemplars that are not only most central but also dis-
tinctive one another, by solving submodular optimization
on the similarity graph G. Since the L exemplars are dis-
covered in a decreasing order of ranking scores, L can be
set to an arbitrary large number. In this paper, we do not
discuss the details of the algorithm, which can be found in
[15]. Instead, we denote the exemplar detection procedure
by A = SubmDiv(G, L) where A is the set of exemplars and
G ∈ RN×N is the adjacency matrix of the graph G. The
pseudocode is summarized in the step 1–2 of Algorithm 1.



Algorithm 1: Exemplar detection and clustering.

Input: (1) Image graph G. (2) Number of exemplars L.
Output: (1) Exemplar set A and cluster set C.
1: Append a constant vector z ∈ RN×1 to the end
column of G and zT to the end row of G. (N = |G|).
2: A = SubmDiv(G, L).
3: {Cl}Ll=1 = ClustSrc(G, A).

/* Select L number of central and diverse exemplars A.
Function [A] = SubmDiv(G, L)

1: A ← ∅. u = 0 ∈ R(N+1)×1.
while |A| ≤ L do

2: for i = 1 : N do u(i) = TempSrc(G, {A ∪ i}).
3: A ← A∪ argmaxi u.

/* Get marginal gain u from the G and the node set P.
Function [u] = TempSrc(G, P)

1: Solve u = Lu where L is the Laplacian of G under
constraints of u(P) = 1 and u(N + 1) = 0.
2: Compute the marginal gain u = |u|1.

/* Get cluster set C from the graph G and exemplars A.
Function C = ClustSrc(G, A)

1: Let L = |A| and M = |G|. V is vertext set of G.
2: Compute the matrix X ∈ R(M−L)×L by solving
LuX = −BT Is where if we let X = V\A, Lu = L(X ,
X ), B = L(A,X ), and Is is an L× L identity matrix.
3: Each vertex v∈V is clustered cv= argmaxk X(v, k).

Next, the clustering is performed using the random walk
model [9]; each image i is associated with the exemplar that
a random walker starting at i is most likely to reach first.
Then, we cluster the images that share the same exemplar
as the most probable destination. This procedure is imple-
mented as a function ClustSrc of Algorithm 1.

Our exemplar detection/clustering runs in O(L|E|) where
|E| is the number of edges. Since we use sparse KNN graphs
where each vertex links to a constant number of neighbors,
its overall computation runs in a linear time O(LN).

3.5 Brand Localization via Cosegmentation
As the clustering output, we obtain the groups of coherent

images C = {Cl}Ll=1. The brand localization is achieved by
separately applying the cosegmentation algorithm to each
cluster. This separate cosegmentation scheme is advanta-
geous not only for parallelization but also for performance.
Especially, for performance, it prevents cosegmenting the
images of no commonality, which contradicts the basic as-
sumption of cosegmentation algorithms. For instance, given
the Prada brand, cosegmenting bag and jewelry images could
be worsen than individually segmenting each image.

The cosegmentation partitions each of multiple images
into foreground (i.e. the regions recurring across the im-
ages like bags in Fig.3.(d)) and background (i.e. the other
regions). We select the MFC method [13] as our base coseg-
mentation algorithm, since it is scalable and has been suc-
cessfully tested with Flickr user images. The MFC algorithm
consists of two procedures, which are foreground modeling
and region assignment. The foreground modeling step learns
the appearance models for foreground and background. It
is implemented by the Gaussian mixture model (GMM) on
the RGB color space. The foreground models compute the
values of any given regions with respect to the foregrounds

Algorithm 2: Brand localization via cosegmentation.

Input: (1) Cluster set C = {Cl}Ll=1. (2) Image graph G.
Output: (1) Segmentation of each image i ∈ I into

foreground Fi and background Bi.
foreach Cl ∈ C do

1: Find central image c = SubmDiv(Gl, 1) where
Gl = G(Cl) is the subgraph of Cl.
2: Apply the unsupervised MFC algorithm [13] to
{c ∪Nc} where Nc is the neighbor of c in the graph
Gl. As a result, we obtain segmentation for {c ∪Nc}.
3: Let Sl ← {c ∪Nc} and Ul ← Cl\Sl.
while Ul 6= ∅ do

4: Sample an image i from {Ul ∩NSl}.
5: Get foreground model {vi} = FM ({Ni ∩ Sl}).
6: Segment the image i: (Fi,Bi) = RA (i, {vi}).
7: Let Sl ← Sl ∪ i and Ul ← Ul\i.

/* {vi} = FM (Si) is the function to learn foreground
model {vi} of MFC [13] from the segmented images Si.
/* (Fi,Bi) = RA (i, {vi}) is the function to run region
assign- ment of MFC [13] on image i using {vi}.

and background, based on which the region assignment al-
locates the regions of an image via a combinatorial-auction
style optimization to maximize the overall allocation values.
More details of the algorithm can be referred to [13].

For each cluster Cl, we perform the cosegmentation by
iteratively applying the foreground modeling and region as-
signment steps under the guidance of the subgraph G(Cl)
whose vertex set is Cl [14]. Its basic idea is that the neigh-
boring images in G(Cl) are visually similar, and thus they
are likely to share enough commonality to be segmented to-
gether. Therefore, we iteratively segment each image i by
using the learned foreground models from its neighbors in
the graph. Then, the segmented image i is subsequently
used to learn the foreground models for its neighbors’ seg-
mentation. That is, we iteratively run foreground modeling
and region assignment by following the edges of G(Cl). The
overall algorithm, which runs in a linear time O(|Cl|), is
summarized in Algorithm 2. For initialization, as shown in
step 1–2 of Algorithm 2, we run the unsupervised version of
the MFC algorithm to the exemplar of Cl and its neighbors,
from which the iterative cosegmentation starts.

4. BRAND ASSOCIATION MAPS
We visualize the clusters (or exemplars) in a circular lay-

out, in order to concisely represent both short-range and
long-range interactions between them. We place the visual
clusters by using two different metrics, the radial distance
and angular distance, inspired by the Nielsen’s method [2]:

1. The radial distance of a cluster reflects how strongly
it associates with the brand. A larger cluster appears
closer to the center of the map.

2. The angular distance between a pair of clusters shows
their closeness. The smaller the angular distance be-
tween the two is, the higher the correlation is.

Since Nielsen’s algorithm is unknown and no photo-based
brand association mapping has been developed yet, we de-
sign a new embedding algorithm that satisfies the above re-
quirements. Our objective is to calculate (r,θ) ∈ RL×2,



Algorithm 3: Computing polar coordinates of clusters.

Input: (a) Cluster set C = {Cl}Ll=1. (b) Image graph G.
(c) Image sizes to be drawn t ∈ RL×1.

Output: Polar coordinates (r,θ) ∈ RL×2 of C.
/* Radial coordinates. */
1: Compute transition matrix P by row-normalizing G.
2: Solve Eq.(1) to get stationary distribution π ∈ RN×1.
3: foreach Ca ∈ C do compute πa =

∑
i∈Ca π(i).

4: Let πmin = mina∈C πa and πmax = maxa∈C πa.
5: foreach Ca ∈ C do obtain r(a) by solving Eq.(2).
/* Angular coordinates. */
6: Obtain the cluster similarity S ∈ RL×L from Eq.(4).
7: Initialize θ by polar dendrogram of hierarchical
clustering on S, J = 0, Jold = a large number.
while |J − Jold| > ε do

8: Calculate ∂
∂θ
J ∈ RL×1. For each a ∈ C,

∂
∂θa

J =
∑
b∈C

(
S(a, b)− γ|θa − θb|γ−1

)
G where G =

−2(1− cos(θa − θb))−1/2(− sin θa cos θb + cos θa sin θb).
9: θnew = θ + µ ∂

∂θ
J.

10: Jnew =
∑
a

∑
b S(a, b)|θa − θb| −

∑∑
|θa − θb|γ .

11: Update Jold = J, J = Jnew,θ = θnew.

/* Force-directed refinement. */
12: Obtain Cartesian coordinates x ∈ RL×2 from (r,θ)
and a pariwse distance matrix D. Store the original x0.
while x is updated do

13: Set the displacement vector d = 0. Set attractive
and repulsive forces: fat(x) = x2/k and fre(x) = k2/x.
foreach pair (a, b) if D(a, b) < γ(t(a) + t(b)) do

14: d(b)+ = fre(|x(b)− x(a)|).
15: foreach a ∈ C do d(a)− = fat(|x(a)− x0(a)|).
16: foreach a ∈ C do x(a)+ = d(a).

17: Obtain the final (r,θ) from x.

which are the polar coordinates of all clusters of C. Algo-
rithm 3 summarizes the whole mapping procedure.

Radial distances of clusters: According to the require-
ment 1, a larger cluster has a smaller radial distance (i.e.
closer to the center). In order to estimate the cluster sizes,
we first compute the stationary distribution π ∈ RN×1 of
the graph G, where π(i) indicates a random walker’s visit-
ing probability of node i. We assume that the size of cluster
Ca is proportional to the sum of stationary distribution of
the nodes in Ca, which means the portion of time that a
random walker traversing the graph stays in the cluster Ca.
That is, in a larger cluster, a random walker stays longer.

Given the transition matrix P obtained by normalizing the
rows of G, the stationary probability vector π can be com-
puted by solving π = PTπ with ‖π‖1 = 1. However, it is
well known from the success of PageRank that a regularized
stationary distribution is more robust and can incorporate
a prior knowledge; it can be obtained by solving

π = P̃Tπ where P̃ = λP + (1− λ)1vT (1)

where v ∈ RN×1 is the teleporting probability such that
v(i) ≥ 0, ‖v‖1 = 1. It can supply a prior ranking to each
node; without it, one can let v = [1/N, · · · , 1/N ]T be uni-
form. 1 is an all-one vector, and λ is a regularization param-
eter to weight the random walker’s behavior between edge
following and random transporting. We set λ = 0.9 in all
experiments.

Once we have π, then we compute the stationary proba-
bility πa of each cluster Ca by summing over the values of
vertices in the cluster: πa =

∑
i∈Ca π(i). Let rmax and rmin

be max and min radius of the circular layout, and πmax and
πmin be max and min cluster stationary probability, respec-
tively. Finally, the radial coordinate r(a) of cluster Ca is

r(a) =
rmax − rmin
πmax − πmin

(πmax − πa) + rmin. (2)

Angular coordinates of clusters: In order to obtain
the angular coordinates θ of clusters C, we first compute
all pairwise similarities S ∈ RL×L between the clusters, and
then apply the modified spherical Laplacian Eigenmap tech-
nique [3, 4] to project the clusters on a circular manifold.

We use the random walk with restart (RWR) algorithm [24]
to define the cluster similarity on a graph. The similarity
values of all nodes sa with respect to cluster Ca is defined as

sa = λPsa + (1− λ)vTa with va(i) =

{
1/|Ca| if i ∈ Ca
0 otherwise

(3)

The score sa(i) means the probability that a random walker
stays at node i when the walker follows the edge of graph
with probability λ and return to uniformly random nodes of
cluster Ca with 1 − λ. It is straightforward to compute the
similarity score from Ca to Cb, denoted by S(a, b), as follows:

S(a, b) =
∑
i∈Cb

sa(i)/Sa where Sa = 1−
∑
i∈Ca

sa(i). (4)

Next, we project the clusters on a unit circle. Our circular
embedding is based on the Spherical Laplacian Information
Maps (SLIM) [4], which extends the Laplacian eigenmap
(LEM) optimization [3] with an additional constraint of em-
bedding data on the surface of sphere.

Conceptually, if a pair of clusters is similar to each other,
then their angular difference in embedding should be small.
Hence, the objective is formulated as finding θ to minimize

θ = argmin
∑
a∈C

∑
b∈C

S(a, b)|θa − θb| −
∑
a∈C

∑
b∈C

|θa − θb|γ . (5)

The LEM objective (i.e. the first term of Eq.(5)) enforces
nearby points in the graph to be as close together as possible
in the angular representation. However, the optimization
using only the LEM objective attains a trivial solution to
collapse all data to the same point. Therefore, the regular-
izer (i.e. the second term) is included in order to spread the
embedded clusters on a circle. It leads the optimization to
prefer large angular distances between all pairs of clusters.
We set the constant γ = 0.5 in our experiments.

Since the optimization problem in Eq.(5) has no closed-
form solution, we employ a gradient descent procedure, as
summarized in step 7–11 of Algorithm 3. By nature, the
final embedding highly depends on the initialization, for
which we first perform hierarchical clustering on S, and then
use its polar dendrogram. This initialization enables similar
nodes to have small geodesic distances.

Layout refinement: We slightly update the coordinates
of clusters (r,θ) so that the final layout is more visually
pleasant. We separate any pair of exemplars that are too
much overlapped, by using a force-directed drawing algo-
rithm called Fruchterman and Reingold’s method. The clus-
ter positions are updated to reach equilibrium states by the



attractive and repulsive forces. The attractive forces en-
courage the updated positions to be as similar to the orig-
inal (r,θ) as possible, while the repulsive forces take part
severely overlapped exemplars. This refinement is summa-
rized in step 12–17 of Algorithm 3.

5. EXPERIMENTS
In our experiments, we first present the examples of brand

association maps in section 5.1. Then, we quantitatively
evaluate the proposed approach from two technical perspec-
tives: exemplar detection/clustering in section 5.2, and brand
localization via image cosegmentation in section 5.3. Since
the main goal of this paper is to achieve the two technical
visualization tasks, we focus on validating the algorithmic
performance over other candidate methods instead of user
study. Finally, we examine the correlation between our find-
ings from community photos and the actual sales data of
brands in section 5.4.

5.1 Visualization of Brand Association Maps
We present the brand association maps of six compet-

ing brands of the luxury category in Fig.5. We show top
20 exemplars (i.e. cluster centers) in the map. We make
several interesting observations as follows. First of all, our
algorithm successfully discovers brands’ characteristic visual
themes (e.g . the watch clusters in the Rolex and the iconic
check patterns of the Burberry). Second, much of highly
ranked clusters attribute to some specific scenes where photo-
taking is preferred. For example, in the Rolex, the clusters
of horse-riding and auto-racing events that are sponsored
by the Rolex are as dominant as those of its main product
watches. Such event topics are more favorable to be recorded
as pictures rather than texts. In the Louis+Vuitton, there
are lots of wedding related clusters; it makes sense because
the wedding is not only an event where the products of lux-
ury brands are purchased much, but also a memorable mo-
ment where the photos are taken a lot.

Although our photo-based brand association map is novel
and promising, there are several issues to be explored fur-
ther. First, we may need to correctly handle highly redun-
dant or noisy clusters, which are mainly caused by the im-
perfection of image processing and clustering. Second, we
also need to deal with polysemous brand names; for exam-
ple, the Mont+Blanc is also the name of the mountain. If
we use additional keywords during image crawling to filter
them out, the volume of retrieved images decreases severely.

5.2 Results on Clustering
Task: We evaluate the performance of our algorithm and

the baselines for the exemplar detection/clustering task as
follows. We choose 20 brands (i.e. five brands per category),
and generate 100 sets of groundtruth per brand as follows.
We randomly sample three images (i, j, k) from the image
set of each brand, and manually label which of j and k is
more similar to i. We denote j � k|i if j is more similar
to i than k. After applying each algorithm, suppose that
Ci, Cj , and Ck denote the clusters that include image i,
j, and k, respectively. Then, we compute the similarity
between clusters σ(Cj , Ci) and σ(Ck, Ci) by using the RWR
algorithm in section 4. Finally, we compute the accuracy of
the algorithm using the Wilcoxon–Mann–Whitney statistics:

ACC :=

∑
(i,j,k) I(j � k|i ∧ σ(Cj , Ci) > σ(Ck, Ci))∑

(i,j,k) I(j � k|i)
(6)

where I is an indicator function. The accuracy increases only
if the algorithm can partition the image set into coherent
clusters, and the similarities between clusters coincide well
with human’s judgment of groundtruth.

Baselines: We compare our algorithm with four base-
lines. The (KMean) and the (Spect) are the two popular
clustering methods, K-means and spectral clustering, re-
spectively. The (LP) is a label propagation algorithm for
community detection [20], and the (AP) is the affinity propa-
gation [7], which is a message-passing based clustering algo-
rithm. Our method is tested in two different ways, according
to whether image segmentation is in a loop or not. The (Sub)
does not exploit the image cosegmentation output, whereas
the (Sub-M) is our fully geared approach. That is, this com-
parison can justify the usefulness of our alternating approach
between clustering and cosegmentation. For all algorithms,
we set the number of clusters as L = 300, and use the same
image features and KNN similarity graphs of section 3.

Quantitative results: Fig.6 reports the results of our
algorithm and four baselines across 20 brand classes. The
leftmost bar set is the average accuracies of 20 classes. In
most brand classes, the accuracies of our method (Sub-M) are
better than those of all the baselines. The average accuracy
of our (Sub-M) is 62.0%, which is much higher than 51.7% of
the best baseline (AP). In addition, the average accuracies of
the (Sub-M) are notably better than (Sub), which implicates
that the cosegmentation for brand localization can improve
the clustering performance as expected.

5.3 Results on Brand Localization
Task: The brand localization task is evaluated as follows.

As groundtruths, we manually annotate 50 randomly sam-
pled images per brand, for the same 20 brands in the previ-
ous experiments. We do not label too obvious images depict-
ing products on white background, since they are too trivial
to correctly evaluate the performances of algorithms. The
accuracy is measured by the intersection-over-union metric
(GTi ∩Ri)/(GTi ∪Ri), where GTi is the groundtruth of im-
age i and Ri is the regions segmented by the algorithm. It
is a standard metric in segmentation literature [13, 15]. We
compute the average accuracy from all annotated images.

Baselines: We select two baselines that can segment
object regions from a large number of images in an unsu-
pervised manner (i.e. with no labeled seed images). The
(LDA) [21] is an LDA-based unsupervised localization method,
and the (COS) [15] is a state-of-art submodular optimization
based cosegmentation algorithm. Our algorithm is tested in
three different versions, according to whether exemplar de-
tection/clustering is in a loop or not. The (MFC) runs our
cosegmentation without involving our clustering output (but
using a random partitioning instead), in order to show the
importance of the clustering step when segmenting highly
diverse Web images. The (MFC-S) is a single loop of our ex-
emplar detection/clustering and cosegmentation, and (MFC-
M) iterates this process more than twice. In almost all cases,
it converges in two iterations. Hence, this comparison can
quantify the accuracy increase by the iterations. We run
all algorithms in an unsupervised way for a fair comparison.
Since it is hard to know the best number of foregrounds K



Figure 5: Examples of brand association maps for six brands of the luxury category.

Figure 6: Clustering accuracies of two variants of our approach (Sub-*) and four baselines for the 20 selected brands.

The average accuracies over the 20 brands, shown in the leftmost bar set, are (Sub-M): 62.0%, (Sub): 57.8%, (Kmean):

50.5%, (Spect): 49.2%, (LP): 51.4%, and (AP): 51.7%.

in advance (e.g . multiple foregrounds may exist in each im-
age), we repeat each method by changing K from one to
five, and report the best results.

Quantitative results: Fig.7 shows that our method out-
performs other candidate methods in almost all classes. Es-
pecially, our average accuracy is 49.5%, which is notably
higher than 36.7% of the best baseline (COS). In addition, the
average accuracy of the (MFC-M) is also higher than those of
(MFC-S) and (MFC), which demonstrates that the clustering
and cosegmentation are mutually-rewarding.

Qualitative analysis: Fig.8 shows six sets of brand lo-
calization examples. The images of each set belong to the
same cluster, and thus are cosegmented. We observe that the
subjects and their appearances severely vary across the pic-
tures even though they are associated with the same brands.
However, our approach can quickly cluster a large-scale im-
age set and segment out common regions in an unsupervised
and bottom-up way, which can be an useful function for var-
ious Web applications, including detecting regions of brand
for online multimedia advertisement.

5.4 Correlation with Sales Data
Since our work is the first attempt on exploring online

photo collections for brand associations, we additionally re-
port the statistics of correlations between image data and
sales data of the brands. We conduct two different compar-
isons. First, we observe how the photo volumes of brands
are correlated with their market shares. For example, the
average annual revenue of the Nike is higher than that of
the Adidas by about 40% from 2006 to 2011. We examine
whether the Nike is also dominant over the Adidas in the vol-
umes of Web photos. Second, we study in-depth correlation
between the product groups of each brand. For example, the
annual reports of the Louis+Vuitton classify their business
into several product groups such as leather goods, perfume,
jewelry, and wine. We compare between the proportions of
product groups in image data and sales data of the brand.

We obtain the sales data from the annual reports that are
publicly available on the companies’ webpages. We ignore
the brands held by private companies (e.g . Chanel), because
it is often hard to know accurate financial information. In
this analysis, we use image and sales data from 2006 to 2011.



Figure 7: Brand localization accuracies of three variants of our approach (MFC-*) and two baselines. The average

accuracies of the leftmost bar set are (MFC-M): 49.5%, (MFC-S): 46.8%, (MFC): 41.7%, (COS): 36.7%, and (LDA): 30.6%.

Figure 8: Six groups of brand localization examples. We show input images (top) and their segmentation output

(bottom). In each group, we sample four or five images that belong to the same cluster, and thus are jointly segmented.

Correlation between photo volumes and market
shares: Fig.9 shows the proportions of photo volumes and
market shares for the brands per category. The ranking of
the brands in the two data types are roughly similar, but
the percentages do not agree each other because the pre-
ferred scenes or situations of photo taking are different from
those of product purchase. For example, the Guinness has
a larger percentage value in the photo volume than in the
sales thanks to its positioning as premium beer. On the con-
trary, Taco+Bell occupies a small portion of photo volumes.
It may be because the Taco+Bell is a cheap fastfood brand,
which hardly attracts people to take pictures for the brand.

Correlation between product groups: Now we turn
to the comparison between product groups in each brand.
The main challenge here is that it is difficult for both hu-
man and computers to correctly classify millions of images
into the predefined product groups. For human, the data
size is too large to manually classify them. For computers,
there is no classifier applicable to noisy Web images with
high accuracies. Thus, we take advantage of our exemplar
detection/clustering results. We manually classify each ex-
emplar into one of predefined groups, and all the images in
the same cluster are labeled as the same. The classification
of product groups is based on the brand’s annual reports.

Fig.10 shows the results of product group analysis for four
luxury brands. We first label exemplar images by one of
three groups: product, company, and personal. The prod-
uct group comprises the photos whose main contents are
the products of the brand. The company group includes
the images that are directly relevant to the brand but not
to any particular products. It consists of four subgroups:
advertisement, logo, shop, and event. The final one is the

personal group for the private pictures whose contents are
not explicitly associated with brands.

We summarize several observations as follows. First, in
most brands, the personal group is the first or second largest
one, which may result from that people usually take pictures
on personal matters. Second, the company group is also
very popular; for examples, people are interested in luxuri-
ous Louis+Vuitton’s stores or advertisement as much as its
products. Moreover, the events hosted by brands are also
popularly taken such as fashion shows, music concerts, and
sports activities. Third, in the product group, one or two
leading product types take the majority of photo volumes
while some product segments like wines, perfume, and jew-
elry rarely appear.

6. CONCLUSION
In this paper, we addressed the problem of visualizing the

brand associations by leveraging large-scale online photo col-
lections. We developed a novel approach to jointly perform-
ing exemplar detection/clustering and brand localization in
a mutually-rewarding way. With the experiments of about
five millions of images for 48 brands, we have shown the
superiority of our approach for the two visualization tasks
over other candidate methods. The empirical results as-
sured that our method can be a fundamental component to
achieve our ultimate goal: developing an interactive system
for both marketers and general users to automatically elicit
and visualize brand associations from online images, which
is a next direction of our future work.
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Figure 9: Comparison between the market shares (left) and the portions of photo volumes (right) for the brands of

four categories: (a) luxury, (b) sports, (c) beer, and (d) fastfood. The numbers indicate percentage values.

Figure 10: Results of the product group analysis for four luxury brands. Each pie chart shows the proportions of

three groups in the image volume: product, company, and personal. In the bottom, the images of the company group

are further classified into one of advertisement, logo, shop, and event. In the right, bar charts show the proportions of

the images (top) and the actual revenues (bottom) for the product group. The numbers indicate percentage values.
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